Utilizing Dual Information for Moving Target Search Trajectory Optimization
نویسندگان
چکیده
Various recent events have shown the enormous importance of maritime search-and-rescue missions. By reducing the time to find floating victims at sea, the number of casualties can be reduced. A major improvement can be achieved by employing autonomous aerial systems for autonomous search missions, allowed by the recent rise in technological development. In this context, the need for efficient search trajectory planning methods arises. The objective is to maximize the probability of detecting the target at a certain time k, which depends on the estimation of the position of the target. For stationary target search, this is a function of the observation at time k. When considering the target movement, this is a function of all previous observations up until time k. This is the main difficulty arising in solving moving target search problems when the duration of the search mission increases. We present an intermediate result for the single searcher single target case towards an efficient algorithm for longer missions with multiple aerial vehicles. Our primary aim in the development of this algorithm is to disconnect the networks of the target and platform, which we have achieved by applying Benders decomposition. Consequently, we solve two much smaller problems sequentially in iterations. Between the problems, primal and dual information is exchanged. To the best of our knowledge, this is the first approach utilizing dual information within the category of moving target search problems. We show the applicability in computational experiments and provide an analysis of the results. Furthermore, we propose well-founded improvements for further research towards solving real-life instances with multiple searchers. 1998 ACM Subject Classification G.2.3 Applications
منابع مشابه
Optimal Observer Path Planning For Bearings-Only Moving Targets Tracking Using Chebyshev Polynomials
In this paper, an optimization problem for the observer trajectory in the bearings-only surface moving target tracking (BOT) is studied. The BOT depends directly on the observability of the target's position in the target/observer geometry or the optimal observer maneuver. Therefore, the maximum lower band of the Fisher information matrix is opted as an independent criterion of the target estim...
متن کاملTrajectory optimization under kinematical constraints for moving target search
Various recent events in the Mediterranean sea have shown the enormous importance of maritime search-and-rescue missions. By reducing the time to find floating victims, the number of casualties can be reduced. A major improvement can be achieved by employing unmanned aerial systems for autonomous search missions. In this context, the need for efficient search trajectory planning methods arises....
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملOptimal Trajectory Generation for Energy Consumption Minimization and Moving Obstacle Avoidance of SURENA III Robot’s Arm
In this paper, trajectory generation for the 4 DOF arm of SURENA III humanoid robot with the purpose of optimizing energy and avoiding a moving obstacle is presented. For this purpose, first, kinematic equations for a seven DOF manipulator are derived. Then, using the Lagrange method, an explicit dynamics model for the arm is developed. In the next step, in order to generate the desired traject...
متن کاملFormation Control and Path Planning of Two Robots for Tracking a Moving Target
This paper addresses the dynamic path planning for two mobile robots in unknownenvironment with obstacle avoidance and moving target tracking. These robots must form atriangle with moving target. The algorithm is composed of two parts. The first part of thealgorithm used for formation planning of the robots and a moving target. It generates thedesired position for the robots for the next step. ...
متن کامل